

Technical design note

Project name	Land East of George Lane, Kilmington				
Design note title	Drainage Strategy				
Document reference	27120-HYD-XX-XX-TN-D-0001				
Author	Richard Hughes				
Revision	P02				
Date	16 January 2023	Approved	\checkmark		

1. Introduction

- 1.1 This Technical Note supports representations by Place Land Limited to the East Devon Local Plan and the allocation of land east of George Lane for residential development under Policy KILM_09. The Technical Note demonstrates that the site can be effectively drained in terms of both foul and surface water.
- 1.2 The findings and proposals contained within this Technical Note are based on desk based investigations and will require further site work to confirm the conclusions.

2. Surface Water

2.1 Existing

- 2.1.1 The site is currently undeveloped 'greenfield' and is used for arable agricultural.
- 2.1.2 It is bounded to the north by the A35 Gammons Hill, to the west by George Lane, to the south by residential development and to the east by fields and public open space and the Old Inn public house.
- 2.1.3 Site location plans and site referencing information are shown below.

Figure 1 – Site Location

Figure 2 – Site Location

Site Referencing Information					
Site address	George Lane				
	Kilmington				
	East Devon				
	EX13 7DL				
Grid reference	E. 326981, N. 98287				
	SY269982 / SY2698198287				

- 2.1.4 The topography of the site falls generally from west to east at an average gradient of 1 in 33 to a low point in the north-east corner of the site, adjacent to the A35.
- 2.1.5 As the site is greenfield, it is anticipated that there are no formal drainage systems serving the site. A copy of the South West Water sewer records, included in Appendix B, has been obtained which confirms that there are no public surface water sewers within the site boundary.

An existing public sewer network is shown in the adjacent residential development to the west serving Dares Field. There is no apparent outfall point and it is assumed that the system discharges to a soakaway.

2.1.6 There are no watercourses recorded within the site boundary although a site inspection has revealed a culvert under the A35 adjacent to the north-east corner.

2.1.7 Referring to the on-line GOV.UK mapping service for flood risk from surface water, shows the whole of the site to be at 'very low' risk however, there is a length of medium risk immediately adjacent to the southern side of the A35 flowing to the east, see Figure 3 below.

Figure 3: Surface Water Mapping

The mapping also shows that the site is entirely located within Flood Zone 1 which is a low risk of flooding (≤0.1% AEP of fluvial flooding in any given year), see Figure 4 below.

Figure 4: Flood Zone Mapping

Hydrock

2.2 Post Development

2.2.1 The proposal is for 37 residential dwellings together with associated access, parking and open space.

A copy of the proposed site layout plan is included in Appendix A.

- 2.2.2 The site lies within the responsibility of Devon County Council as Lead Local Flood Authority. Reference has been made to their document "Sustainable Drainage Systems – Guidance for Devon" dated January 2017'.
- 2.2.3 In accordance with the National Planning Policy Framework (NPPF), surface water runoff from the proposed development is to be captured and managed utilising sustainable methods where possible. As such, the following surface water drainage management strategies will be assessed in direct relation to the site, based on preferential order in accordance with the NPPF, National Planning Policy Guidance (NPPG), Building Regulations and Sewerage Sector Guidance (SSG).
 - Infiltration
 - Discharge to local watercourse
 - Discharge to public surface water sewer
 - Discharge to public combined sewer
- 2.2.4 No ground investigation work has been undertaken at the time of writing however, reference has been made to the on-line British Geological Society mapping information. This indicates that the site is underlain by a bedrock of mudstone with superficial deposits of silt, sand and gravel in the western part of the site and sand and gravel in the eastern part.

On the basis of the above, it is anticipated that the use of soakaways will be practical for the disposal of surface water runoff. This assumption Is supported by the apparent disposal of surface water from the Dares Field development to the west to ground.

2.2.5 An infiltration rate of 1.0 x 10⁻⁵ m/s has been assumed as a conservative value for the purposes of estimating soakaway sizes. It is possible that each plot can be provided with its own soakaway manhole however, this will be dependent on the final layout and being able to achieve 5m offsets to all structures.

For the purposes of this assessment, it is assumed that this is not possible and that all buildings and roads will need to be drained to an infiltration basin located in the north-east corner of the site as a 'worst case' option.

- 2.2.6 An assumed impermeability factor of 55% has been taken for the proposed development areas and an urban creep factor of +10% applied to determine a likely total drained area of 0.775 ha.
- 2.2.7 Applying the above design criteria an infiltration basin design has been carried out using the Source Control module in Micro Drainage. This shows that a basin with a maximum storage depth of 1.3m. and an overall footprint of 836m² will contain runoff generated by a 1 in 100 year storm event with an allowance of +45% for climate change.

The half drain down time is 972 minutes.

- 2.2.8 A copy of the calculations and a drawing showing the size and location of the basin is included in Appendix C.
- 2.2.9 Should infiltration prove not to be practical, surface water runoff will be discharged to the culvert under the A35 and discharge rates restricted to the greenfield QBAR value.

Using the Source Control module in Micro Drainage which estimates a QBAR rate of 6.6 L/s/ha. The total impermeable area, ignoring the urban creep factor, is 0.734 ha therefore the allowable discharge rate will be 4.8 L/s.

The Micro Drainage calculation shows that the storage requirement is very similar to that of the infiltration basin option with a maximum depth of 1.3m and a maximum volume of 551m³.

Copies of the above calculations are included in Appendix C.

3. Foul Water

3.1 Existing

- 3.1.1 As the site is greenfield, it is anticipated that there are no formal drainage systems serving the site. However, a copy of the South West Water sewer records, included in Appendix B, has been obtained which shows that there is an existing 150mm diameter public combined sewer crossing the western part of the site, flowing approximately from north to south.
- 3.1.2 The sewer records also indicate that there is a foul sewer connection from the existing residential development, Dares Field, to the west.
- 3.1.3 It will be necessary to accommodate this combined sewer within the proposed site layout, either by providing a protected route or diverting it as necessary. Any diversion works will require the approval of South West Water.
- 3.1.4 The head of a 150mm diameter public combined sewer is located in the A35, immediately outside the Old Inn public house to the north-east of the site.

3.2 Post Development

3.2.1 The topography of the site is such that it is possible to drain the western part of the site by gravity to the existing combined sewer which passes through the development area.

The remainder of the development to the east will gravitate to the north-east corner of the site and can be connected to the existing combined sewer in the A35 via a new off-site sewer. Should this prove not to be possible it will be necessary to provide a new pumping station in order to pump flows back towards the western combined sewer.

3.2.2 The development proposal is for up to 40 residential dwellings. The anticipated peak flow for the development is 1.8 l/second for 40 units based on an allowance of 4,000 litres/dwelling/day in accordance with the recommendations of clause B3.1.1(b) of the Water UK Sewerage Sector Guidance Appendix C.

- 3.2.3 It is anticipated that all new foul drainage sewers will be offered to South West Water for adoption under a Section104 Agreement. It will be necessary to submit a Pre-Development Enquiry to South West Water at the time of any planning application in order to determine the recommended points of connection and if any off-site reinforcement works are required.
- 3.2.4 A notional foul drainage layout is included in Appendix C.

4. Conclusions

- 4.1 The site is currently undeveloped and therefore is assumed to have no formal drainage connections.
- 4.2 The only existing public surface water sewer in the immediate vicinity of the site shown on the South West Water mapping is in the existing residential development immediately to the west, served by Dares Field. This sewer network appears to have no positive discharge point and therefore it is assumed that this is likely to discharge to a soakaway.
- 4.3 The British Geological Society mapping indicates the site to be underlain by superficial deposits of sands, silts and gravels and it is assumed at this stage that surface water runoff from the development can be disposed of to soakaways.

An infiltration basin located in the north-east corner of the site could serve the development, as shown by the ablutions included in Appendix D.

Should infiltration prove not to be practical, a storage basin of the same size as the infiltration basin with a restricted discharge and a connection to the existing culvert under the A35 can be utilised.

4.4 The South West Water sewer records show a combined sewer passing through the site and in the A35 to the north-east of the site. It is proposed that foul flows from the development be discharged to one or both of these sewers, subject to discussions with South West Water.

APPENDIX A

Sketch Concept Layout - 21121

40m

SCALE 1:500

P1	09.01.23	First Issue to Client	AV / PO
REV	DATE	COMMENTS	AUTHOR / CHECKEE

PROJECT TITLE

Kilmington

DETAIL

Illustrative Masterplan

DRAWING NUMBER (PROJECT-ORIGINATOR-ZONE-LEVEL-TYPE-ROLE-NUMBER)						
KIL	- LHC - 00 - 00 -	- DR - UD - 0106				
STATUS	STATUS DESCRIPTION					
S2	FOR INFORMATION					
REVISION	DATE	SCALE				
P1	JANUARY 2023	1:500 @A1				
CONTRACTORS MUST CHECK ALL DIMENSIONS ON SITE - ONLY FIGURED DIMENSIONS ARE TO BE WORKED FROM - DISCREPANCIES MUST BE REPORTED TO THE ARCHITECT BEFORE PROCEEDING © THIS DRAWING IS COPYRIGHT						

APPENDIX B

South West Water Sewer Record Plan

APPENDIX C

Infiltration Basin Calculation Greenfield Runoff Rate Calculation Storage Basin Calculation Drainage Strategy Plan

Hydrock Consultants Ltd			
•	Land East of George Lane		
	Kilmington		
	Infiltration Basin - Q100+45%	Mirco	
Date 16/01/2023 16:03	Designed by RJH		
File Inf Basin - Whole Site_V2.SRCX	Checked by	Diamaye	
Innovyze	Source Control 2018.1		

Summary of Results for 100 year Return Period (+45%)

Half Drain Time : 972 minutes.

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(l/s)	(m³)	
15	min	Summer	8.537	0.537	2.9	163.6	ΟK
30	min	Summer	8.682	0.682	3.5	225.0	ΟK
60	min	Summer	8.827	0.827	4.0	294.2	ΟK
120	min	Summer	8.965	0.965	4.6	367.6	ΟK
180	min	Summer	9.036	1.036	4.9	408.4	ΟK
240	min	Summer	9.078	1.078	5.0	433.7	ΟK
360	min	Summer	9.129	1.129	5.2	464.7	ΟK
480	min	Summer	9.157	1.157	5.4	482.4	ΟK
600	min	Summer	9.171	1.171	5.4	491.8	ОК
720	min	Summer	9.179	1.179	5.5	496.5	ОК
960	min	Summer	9.188	1.188	5.5	502.6	ОК
1440	min	Summer	9.191	1.191	5.5	504.7	ОК
2160	min	Summer	9.176	1.176	5.4	495.1	ОК
2880	min	Summer	9.151	1.151	5.3	478.8	ОК
4320	min	Summer	9.091	1.091	5.1	441.5	ОК
5760	min	Summer	9.034	1.034	4.8	406.9	ОК
7200	min	Summer	8.982	0.982	4.6	376.9	ОК
8640	min	Summer	8.934	0.934	4.4	350.3	ОК
10080	min	Summer	8.890	0.890	4.3	326.6	ОК
15	min	Winter	8.586	0.586	3.1	183.5	ОК
30	min	Winter	8.742	0.742	3.7	252.4	ОК
60	min	Winter	8.897	0.897	4.3	330.5	ΟK
120	min	Winter	9.045	1.045	4.9	413.7	ΟK
180	min	Winter	9.122	1.122	5.2	460.4	ОК
240	min	Winter	9.168	1.168	5.4	489.8	ΟK

Storm		Rain	Flooded	Time-Peak	
	Event		(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	115.250	0.0	34
30	min	Summer	79.580	0.0	48
60	min	Summer	52.627	0.0	78
120	min	Summer	33.624	0.0	134
180	min	Summer	25.459	0.0	192
240	min	Summer	20.722	0.0	250
360	min	Summer	15.446	0.0	368
480	min	Summer	12.532	0.0	484
600	min	Summer	10.645	0.0	600
720	min	Summer	9.310	0.0	670
960	min	Summer	7.526	0.0	782
1440	min	Summer	5.564	0.0	1038
2160	min	Summer	4.102	0.0	1452
2880	min	Summer	3.298	0.0	1860
4320	min	Summer	2.420	0.0	2688
5760	min	Summer	1.943	0.0	3472
7200	min	Summer	1.640	0.0	4264
8640	min	Summer	1.428	0.0	5032
10080	min	Summer	1.271	0.0	5840
15	min	Winter	115.250	0.0	34
30	min	Winter	79.580	0.0	48
60	min	Winter	52.627	0.0	76
120	min	Winter	33.624	0.0	132
180	min	Winter	25.459	0.0	190
240	min	Winter	20.722	0.0	246

Hydrock Consultants Ltd	Page 2	
•	Land East of George Lane	
	Kilmington	
	Infiltration Basin - Q100+45%	Micro
Date 16/01/2023 16:03	Designed by RJH	
File Inf Basin - Whole Site_V2.SRCX	Checked by	Diamaye
Innovyze	Source Control 2018.1	

Summary	of	Results	for	100	vear	Return	Period	(+45%)
-					-			

	Stor Even	m t	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Volume (m³)	Status
360	min	Winter	9.225	1.225	5.6	526.7	ОК
480	min	Winter	9.257	1.257	5.8	548.6	ΟK
600	min	Winter	9.276	1.276	5.9	561.3	ΟK
720	min	Winter	9.286	1.286	5.9	568.3	ΟK
960	min	Winter	9.291	1.291	5.9	572.0	ΟK
1440	min	Winter	9.291	1.291	5.9	572.2	ΟK
2160	min	Winter	9.266	1.266	5.8	555.0	ΟK
2880	min	Winter	9.228	1.228	5.7	529.2	ΟK
4320	min	Winter	9.143	1.143	5.3	473.5	ΟK
5760	min	Winter	9.061	1.061	5.0	423.1	ΟK
7200	min	Winter	8.987	0.987	4.6	379.8	ΟK
8640	min	Winter	8.920	0.920	4.4	342.8	ОК
10080	min	Winter	8.860	0.860	4.1	311.1	O K

	Stor Even	m t	Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)
360	min	Winter	15.446	0.0	360
480	min	Winter	12.532	0.0	474
600	min	Winter	10.645	0.0	584
720	min	Winter	9.310	0.0	692
960	min	Winter	7.526	0.0	880
1440	min	Winter	5.564	0.0	1102
2160	min	Winter	4.102	0.0	1564
2880	min	Winter	3.298	0.0	2016
4320	min	Winter	2.420	0.0	2868
5760	min	Winter	1.943	0.0	3704
7200	min	Winter	1.640	0.0	4536
8640	min	Winter	1.428	0.0	5288
10080	min	Winter	1.271	0.0	6064

Hydrock Consultants Ltd				
•	Land East of George Lane			
	Kilmington			
	Infiltration Basin - Q100+45%	Mirco		
Date 16/01/2023 16:03	Designed by RJH			
File Inf Basin - Whole Site_V2.SRCX	Checked by	Diamage		
Innovyze	Source Control 2018.1			

<u>Rainfall Details</u>

	Rainfall M	4odel		FSR	V	Vinte	r Storms	Yes
Return	Period (ye	ears)		100		Cv	(Summer)	0.750
	Re	egion	England	and Wales		Cv	(Winter)	0.840
	M5-60	(mm)		18.000	Shortest	Stor	m (mins)	15
	Rat	tio R		0.300	Longest	Stor	m (mins)	10080
	Summer St	corms		Yes	Clin	nate	Change %	+45

<u>Time Area Diagram</u>

Total Area (ha) 0.775

Time	(mins)	Area												
From:	To:	(ha)												
0	4	0.155	4	8	0.155	8	12	0.155	12	16	0.155	16	20	0.155

Hydrock Consultants Ltd					
•	Land East of George Lane				
	Kilmington				
	Infiltration Basin - Q100+45%	Micro			
Date 16/01/2023 16:03	Designed by RJH	Dcainago			
File Inf Basin - Whole Site_V2.SRCX	Checked by	Diginada			
Innovyze	Source Control 2018.1				

Model Details

Storage is Online Cover Level (m) 10.000

Infiltration Basin Structure

Invert Level (m) 8.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.03600 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.03600

Depth (m)	Area (m²)								
0.000	214.0	1.200	657.0	2,400	836.0	3,600	836.0	4,800	836.0
0.200	282.0	1.400	744.0	2.600	836.0	3.800	836.0	5.000	836.0
0.400	349.0	1.600	836.0	2.800	836.0	4.000	836.0		
0.600	420.0	1.800	836.0	3.000	836.0	4.200	836.0		
0.800	495.0	2.000	836.0	3.200	836.0	4.400	836.0		
1.000	574.0	2.200	836.0	3.400	836.0	4.600	836.0		

Hydrock Consultants Ltd		Page 1
•	Land East of George Lane	
	Kilmington	
	Greenfield Runoff Rates	Micro
Date 19/12/2022 17:26	Designed by RJH	Desinado
File	Checked by	Diamage
Innovyze	Source Control 2018.1	1
ICP	SUDS Mean Annual Flood	
	Input	
Return Period (years) Area (ha) 1.	100 SAAR (mm) 991 Urban 0.000 000 Soil 0.450 Region Number Region 8	
	Results 1/s	

QBAR Rural 6.6 QBAR Urban 6.6

Q100 years 16.0

Q1 year 5.1 Q30 years 12.6 Q100 years 16.0

Hydrock Consultants Ltd	Hydrock Consultants Ltd					
•	Land East of George Lane					
	Kilmington					
	Storage Basin - Q100+45%	Micro				
Date 16/01/2023 16:09	Designed by RJH	Desinado				
File Storage Basin - Whole Site_V2.SRCX	Checked by	Dialitage				
Innovyze	Source Control 2018.1	•				

Summary	of	Results	for	100	vear	Return	Period	(+45응)
					-			

	Storm Event		Max	Max Depth	Max	Max	Status
			(m)	(m)	(1/a)	(m ³)	
			(111)	(111)	(1/3)	(111)	
15	min	Summer	8.529	0.529	4.8	160.3	ОК
30	min	Summer	8.675	0.675	4.8	221.5	ОК
60	min	Summer	8.820	0.820	4.8	290.4	ОК
120	min	Summer	8.954	0.954	4.8	361.4	ОК
180	min	Summer	9.022	1.022	4.8	400.0	ΟK
240	min	Summer	9.061	1.061	4.8	423.2	ОК
360	min	Summer	9.106	1.106	4.8	450.5	ΟK
480	min	Summer	9.129	1.129	4.8	465.0	ОК
600	min	Summer	9.140	1.140	4.8	471.5	ОК
720	min	Summer	9.142	1.142	4.8	473.0	ΟK
960	min	Summer	9.136	1.136	4.8	469.0	ΟK
1440	min	Summer	9.115	1.115	4.8	456.0	ΟK
2160	min	Summer	9.078	1.078	4.8	433.5	ΟK
2880	min	Summer	9.039	1.039	4.8	410.0	ΟK
4320	min	Summer	8.955	0.955	4.8	361.9	ОК
5760	min	Summer	8.868	0.868	4.8	315.0	ОК
7200	min	Summer	8.773	0.773	4.8	267.3	ОК
8640	min	Summer	8.651	0.651	4.8	211.0	ОК
10080	min	Summer	8.549	0.549	4.8	168.1	ОК
15	min	Winter	8.579	0.579	4.8	180.4	ОК
30	min	Winter	8.735	0.735	4.8	249.5	ΟK
60	min	Winter	8.890	0.890	4.8	327.0	ОК
120	min	Winter	9.036	1.036	4.8	408.2	ОК
180	min	Winter	9.110	1.110	4.8	453.2	ОК
240	min	Winter	9.155	1.155	4.8	481.0	ОК
360	min	Winter	9.207	1.207	4.8	515.3	ОК

	Storm Event		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	115.250	0.0	166.0	34
30	min	Summer	79.580	0.0	229.3	48
60	min	Summer	52.627	0.0	305.1	78
120	min	Summer	33.624	0.0	390.0	136
180	min	Summer	25.459	0.0	442.9	194
240	min	Summer	20.722	0.0	480.6	252
360	min	Summer	15.446	0.0	537.1	368
480	min	Summer	12.532	0.0	580.8	486
600	min	Summer	10.645	0.0	616.3	604
720	min	Summer	9.310	0.0	646.3	720
960	min	Summer	7.526	0.0	694.4	846
1440	min	Summer	5.564	0.0	719.2	1102
2160	min	Summer	4.102	0.0	857.7	1504
2880	min	Summer	3.298	0.0	919.5	1920
4320	min	Summer	2.420	0.0	1011.4	2744
5760	min	Summer	1.943	0.0	1084.1	3576
7200	min	Summer	1.640	0.0	1143.8	4400
8640	min	Summer	1.428	0.0	1195.1	5032
10080	min	Summer	1.271	0.0	1240.3	5744
15	min	Winter	115.250	0.0	186.0	34
30	min	Winter	79.580	0.0	256.6	48
60	min	Winter	52.627	0.0	341.8	76
120	min	Winter	33.624	0.0	436.7	134
180	min	Winter	25.459	0.0	495.9	190
240	min	Winter	20.722	0.0	538.1	248
360	min	Winter	15.446	0.0	601.3	362

Hydrock Consultants Ltd					
	Land East of George Lane				
	Kilmington				
	Storage Basin - Q100+45%	Mirco			
Date 16/01/2023 16:09	Designed by RJH				
File Storage Basin - Whole Site_V2.SRCX	Checked by	Diamage			
Innovyze	Source Control 2018.1				

Summary	of	Results	for	100	vear	Return	Period	(+45%)
					_			

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
480	min	Winter	9.237	1.237	4.9	534.9	ОК
600	min	Winter	9.253	1.253	4.9	545.7	ΟK
720	min	Winter	9.260	1.260	4.9	550.7	ΟK
960	min	Winter	9.259	1.259	4.9	550.1	ΟK
1440	min	Winter	9.232	1.232	4.9	531.6	ОК
2160	min	Winter	9.184	1.184	4.8	500.1	ΟK
2880	min	Winter	9.128	1.128	4.8	464.2	ΟK
4320	min	Winter	9.003	1.003	4.8	389.1	ОК
5760	min	Winter	8.868	0.868	4.8	315.1	ОК
7200	min	Winter	8.686	0.686	4.8	226.6	ОК
8640	min	Winter	8.508	0.508	4.8	152.0	ОК
10080	min	Winter	8.368	0.368	4.8	101.5	ΟK

Storm			Rain	Flooded	Discharge	Time-Peak		
	Even	t	(mm/hr)	Volume	Volume	(mins)		
				(m³)	(m³)			
480	min	Winter	12.532	0.0	649.8	476		
600	min	Winter	10.645	0.0	688.8	590		
720	min	Winter	9.310	0.0	720.6	702		
960	min	Winter	7.526	0.0	751.8	918		
1440	min	Winter	5.564	0.0	731.9	1158		
2160	min	Winter	4.102	0.0	960.6	1624		
2880	min	Winter	3.298	0.0	1029.8	2084		
4320	min	Winter	2.420	0.0	1132.4	2988		
5760	min	Winter	1.943	0.0	1214.3	3864		
7200	min	Winter	1.640	0.0	1281.1	4616		
8640	min	Winter	1.428	0.0	1338.6	5200		
10080	min	Winter	1.271	0.0	1389.3	5760		

Hydrock Consultants Ltd				
•	Land East of George Lane			
	Kilmington			
	Storage Basin - Q100+45%	Micro		
Date 16/01/2023 16:09	Designed by RJH			
File Storage Basin - Whole Site_V2.SRCX	Checked by	Diginarie		
Innovyze	Source Control 2018.1	•		

<u>Rainfall Details</u>

	Rainfall Model	FSR	Winter Storms	Yes
Return	Period (years)	100	Cv (Summer)	0.750
	Region	England and Wales	Cv (Winter)	0.840
	M5-60 (mm)	18.000	Shortest Storm (mins)	15
	Ratio R	0.300	Longest Storm (mins)	10080
	Summer Storms	Yes	Climate Change %	+45

<u>Time Area Diagram</u>

Total Area (ha) 0.775

Time	(mins)	Area												
From:	To:	(ha)												
0	4	0.155	4	8	0.155	8	12	0.155	12	16	0.155	16	20	0.155

Hydrock Consu	ltants I	Ltd						Pag	e 4
•				Land Ea	ast of Georg	e Lane			
		Kilming	gton						
		Storage	e Basin - Ql	N	Aicco				
Date 16/01/20	23 16:09)		Designe	ed by RJH				
File Storage	Basin -	Whole Site_	V2.SRCX	Checked	d by		Janage		
Innovyze Source Control 2018.1								1	
				Model	<u>Details</u>				
			Storage is	s Online C	over Level ((m) 10.000			
				Tank or Po	nd Structure	2			
				Invert Lev	el (m) 8.000)			
Depth (m) A	Area (m²) Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²) I	Depth (m)	Area (m²)
0.000	214.	0 1.200	657.0	2.400	836.0	3.600	836.0	4.800	836.0
0.200	282.	0 1.400	744.0	2.600	836.0	3.800	836.0	5.000	836.0
0.400	349.	0 1.600	836.0	2.800	836.0	4.000	836.0		
0.600	420.	0 1.800	836.0	3.000	836.0	4.200	836.0		
1.000	493. 574.	0 2.200	836.0	3.400	836.0	4.400	836.0		
			<u>Hydro-B</u>	rake® Opti	mum Outflow	Control	·		
			,	Unit Pofor	onco MD-SUF-	-0101-4900-	1200-4800		
			D	esian Head	(m)	-0101-4800-	1.200		
			Des	ign Flow (1/s)		4.8		
				Flush-	Flo™	C	Calculated		
				Objec	tive Minimi	.se upstrea	um storage		
				Applica	tion		Surface		
				Sump Avail	able		Yes		
			Tim	Diameter	(mm)		101		
		Minimum O	utlet Pipe	Diameter	(III) (mm)		8.000		
		Suggeste	ed Manhole	Diameter	(mm)		1200		
c	Control 1	Points	Head (m)	Flow (l/s)	Contr	col Points	Head	(m) Flow	(l/s)
Design	Point (Calculated)	1.200	4.8	3	Kick	-Flo® 0.	748	3.9
	(Flush-Flo™	0.359	4.8	Mean Flow	over Head	Range	_	4.2
The hydrold	ogical c	alculations	have been	based on t	the Head/Dis	charge rel	ationship f	or the Hyd	dro-Brake®
Optimum as utilised th	specific en thes	ed. Should e storage ro	another ty outing calc	pe of cont	rol device vill be inva	other than lidated	a Hydro-Br	ake Optimu	um® be
								- · · ·	/_ / .
Depth (m) Fic	ow (1/s)	Depth (m) I	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m) FIOW (1/S)
0.100	3.3	0.800	4.0	2.000	6.1	4.000	8.4	7.00	
0.200	4.5 4 R	1 200	4.4 4 Q	2.200	6.6	5 000	0.9 Q 1	x nn	0 11 7
0.400	4.8	1.400	5.2	2.600	6.9	5,500	9.8	8.50	0 12 1
0.500	4.7	1.600	5.5	3.000	7.4	6.000	10.2	9.00	0 12.4
0.600	4.5	1.800	5.8	3.500	7.9	6.500	10.6	9.50	0 12.7
		1		I		I		I	

	-	
HYDROCK PROJECT NO.	SCALE @ A1	
21720-IOCB	1:500	
STATUS DESCRIPTION	STATUS	
INFORMATION	S2	
DRAWING NO. (PROJECT CODE-ORIGINATOR-ZO	REVISION	
21720-HYD-XX-XX-DR-[P02	