Contents

1 **Introduction** 4
1.1 Purpose of this report 4
1.2 The Exeter HMA 4
1.3 The need for a local model 4
1.4 The Popgroup model and local planning 5

2 **Population projections - Assumptions** 6
2.1 Introduction 6
2.2 Estimated actual population (2001 – 2011) 6
2.3 Births 7
2.4 Deaths 7
2.5 Migration 8
2.6 Other considerations – Special populations 10

3 **Dwelling projections - Assumptions** 12
3.1 Introduction 12
3.2 DCLG data: 2008 or 2011 12
3.3 Headship rates 13
3.4 Institutional population rates 13
3.5 Vacancy rates 13

4 **Limitations and caveats** 14
4.1 A Representation of possible future events 14

5 **Results – Housing demand in the Exeter HMA** 15
5.1 Dwelling estimates for the Exeter HMA 15

6 **Implications for East Devon** 17
6.1 Housing demand in East Devon 17

Appendix 18
Dwelling estimates for the Exeter HMA using CLG 2011 rates 18
1 Introduction

1.1 Purpose of this report

1.1.1 This report is intended to:

1. Provide an overview of the population and housing projection methodology used by Devon County Council;
2. Provide details of the assumptions and inputs made with respect to the population-led dwelling projections for the Exeter Housing Market Area (HMA);
3. Detail calculations made to ascertain the projected housing demand in the Exeter Housing Market Area (HMA) for the years 2011 to 2031; and
4. Provide technical evidence relating to potential future housing demand in East Devon.

1.2 The Exeter HMA

1.2.1 This report considers potential housing demand in the Exeter HMA. This area includes the following District Council areas:

- Exeter;
- Teignbridge;
- Mid Devon; and
- East Devon.

1.3 The need for a local model

1.3.1 The Office for National Statistics (ONS) makes national and sub-national (regional, County and District) population projections every two years using the same standard cohort component methodology applied by the Popgroup model, the projection model used by Devon County Council. ONS assumes that the past five year trend in births, deaths and migration will continue into the future and its projections are based on these fixed assumptions which are useful as a benchmark.

1.3.2 However, in areas such as Devon where net migration is one of the major drivers of population change, the approach of using the conditions identified over the past five years and projecting this forward leads to significant volatility in the projections. This is because migration rates are highly sensitive to short term economic factors. As a result, the use of short term trends is inappropriate and it is important to consider a longer term base demographic pattern which covers a twenty year period. This approach has the effect of smoothing the impact of short term economic conditions when undertaking future projections.

1.3.3 The Popgroup model, however, gives flexibility to adjust the assumptions to account for local factors. These can lead to projections which can be different to long term official figures. These factors include, for example, differing long or short term trends in birth, death and migration figures. The model also incorporates local mortality and fertility rates and is not restricted to using solely national figures.
1.4 The Popgroup model and local planning

1.4.1 Devon County Council uses the Popgroup model for population and housing projections. The model provides a suite of products for demographic analysis, forecasting and practical planning. It requires data inputs relating to population counts and fertility, mortality and vacancy rates, and provides outputs of population change, household formation and dwelling demand. The model provides the flexibility to analyse alternative forecasts of demographic change in local communities at a sub-regional level, for example at a housing market area level.

1.4.2 The population forecasting model estimates future population change based on fertility, mortality and migration assumptions using historical data to define these assumptions, integrating official forecasts as appropriate. Population forecasts can then be used to derive likely household and housing profiles consistent with the population’s age-sex composition. Projections made on this basis i.e. population growth not constrained to be consistent with Local Plan Housing allocations, will be identified in this report as the ‘demography’ or ‘population – based’ scenario.

1.4.3 In addition, policy constrained scenarios can be modelled, deriving the future size and profile of a local population resulting from the actual scale of new dwellings provision and/or projected economic growth in each area. Alternative scenarios may be benchmarked against the official population and household statistics produced by ONS. Projections in this report made on such a basis will be identified as a ‘dwelling-based’ scenario’.

1.4.4 Historical data on population, births, death and migration flows provide the basis for the development of all alternative population forecasts. Popgroup provides national fertility, mortality and migration schedules against which local profiles can be calibrated. For scenario development, it is possible to choose a projection time horizon of up to 50 years and to select a variety of demographic assumptions and constraints e.g. future fertility and mortality rates and/or future levels of migration to which scenarios are linked. The model can be used to forecast sub-national and sub-regional populations. The model incorporates a cohort component methodology\(^1\) for population projection, a headship rate model\(^2\) for household projections and an economic activity rate model\(^3\) for its labour force projections. Household and labour force projections have been produced using the derived forecast model\(^4\).

1 A method of estimating or projecting the population by updating the size of each age-sex group in the base population for deaths and migration within each age-sex group during the period between the base date and a given date. New birth cohorts result from births between the base date and the given date. In deriving population projections, the base population is projected forward by calculating the effect of deaths and migration within each age-sex group according to specified mortality and migration assumptions. New birth cohorts are generated by applying specified fertility assumptions to the female population of childbearing age.

In deriving population estimates, actual events on births, deaths and migration are generally used instead of assumptions.

2 ‘The headship rate method’ is based on the assumption that the number of households is equivalent to the number of householders. The following formula describes the relationship between this and headship rate:

\[
\text{(no. of households)} = \text{(no. of householders)} = \text{(no. of population)} \times \text{(headship rate)}
\]

The headship rate can be defined as the proportion of members of a population (defined by age gender and marital status) who act as heads of specific types of households such as married, couple, lone parent and single person households.

3 This model (Economic Activity Model) is not used in Devon population projections.

4 This model (Derived Forecast Model) is a new development in Popgroup allowing household projections to be made.
2 Population projections - Assumptions

2.1 Introduction

2.1.1 The main components of the 2011 based forecasting process are set out below and summary data is given where necessary. The population projections reflect four key components – the existing population base, projected births and deaths and net migration flows.

\[\text{Population (t+1)} = \text{Population (t)} + \text{Births} - \text{Deaths} + \text{Net Migration} \]
\[(t=\text{year}) \]

2.1.2 Projections are made by taking a population estimate for the base year (t) adding the births, subtracting the deaths and then adding in net migration to project the population for the following year (t+1).

2.1.3 This base population is recorded at a single year of age by sex.

2.1.4 The 2011 population estimates have been derived by taking forward the 2001 base year data using known births and deaths (obtained from the Registrar General via ONS) and adding in net migration flows that have taken place since 2001. Each year estimate has been constrained to the ONS mid-year estimates for that year.

2.2 Estimated actual population (2001 – 2011)

2.2.1 These estimates have been based on available evidence of population counts and indicators of change e.g. fertility / mortality rates. The population estimates by age-sex distribution is available from ONS for the intercensal years.

2.2.2 The Census 2011 had originally shown a lower than projected figure when compared to the rolled forward mid-year estimate for 2011. To rectify this, ONS published revised mid-year estimates for the years 2002 to 2010. These revised totals, along with the mid-year Estimate for 2011 (based on the Census 2011) have therefore been used in the modelling.

2.2.3 For the purposes of the projections set out within this report, the base year has however been set at 2001 (despite the availability of the 2011 Census) and has been updated to reflect data available from the Registrar General. This has allowed more reliable detailed data to be included in the model and as such allows the context of new local forecasts to be shown.
2.3 Births

2.3.1 In addition to using known births, the model also requires the application of projected fertility rates to the projected year population. Fertility rates were calculated for each sub area.

1) The Registrar General’s counts of births have been obtained from ONS for all years (prior to 2012) and have been used in the model. More recent data are expected in October 2013.

2) Using local figures for live births and revised mid-year estimates of females aged 15 – 49, the age specific fertility rates (ASFR) were calculated for the local areas. This has involved disaggregating the five year age bandings provided by ONS and smoothing the data using national schedules. The ASFR are based on the past five years’ data.

3) The five year average ratio of males to females has also been used in the model.

2.3.2 Births are calculated by taking the population “at risk” i.e. women aged 15 – 49, and applying the ASFR which yields the number of births. The gender ratio is then applied to the number of births to give an estimate of males and females\(^5\).

2.3.3 With respect to the future trends in fertility rates, a differential is applied from 2011 onwards which scales future rates in line with ONS fertility assumptions. ONS project rising fertility rates for the first few years after 2012/13 and then consistent falling rates until a levelling off around 2027\(^6\).

2.4 Deaths

2.4.1 The model requires an estimate of future mortality rates.

4) The Registrar General’s counts of deaths have been obtained from ONS for all estimated years (prior to 2012) and were used in the model.

5) Using local figures for deaths and revised mid-year estimates for the population, age specific mortality rates (ASMR) were calculated for the local areas. This has also involved disaggregating the five year age bandings provided by ONS and smoothing the data using national schedules. The ASMR are based on the past five years’ data.

6) Deaths are calculated by applying the ASMR which yields the total number of deaths by age and gender in a given year. With respect to the future trends in mortality rates a differential is applied from 20

\(^5\) It is recognised that different groups in society have markedly different fertility rates but as no information on the size of these groups in future years is readily available, this cannot be incorporated into the model for future births. Instead a differential is applied which each yearly rate to the next year.

7) 11 onwards which scales future rates in line with assumptions of falling mortality rates. In all age ranges mortality is predicted to decrease.\footnote{The rate of deaths by age and sex will reduce in all age ranges. Differentials have been applied to current data to reflect this. See ONS publication ‘Mortality in the United Kingdom 2010’.}

\section*{2.5 Migration}

2.5.1 As shown below, the model uses four migration flows to give overall net migration. Immigration and emigration refers to the international population inflows and outflows.

\textbf{Migration into the HMA – Migration out of a HMA + Immigration – Emigration = Net Migration}

\textit{Historic migration figures (2001 to 2010)}

2.5.2 These figures have been obtained from ONS for both international and within UK flows. Five year age bandings by sex have been used. For UK flows, the data has only been provided for 5 year age bandings.

\textit{Projected figures (2011 to 2031)}

2.5.3 In Devon, the assumption made in respect of net migration is critical to the overall population projection. Future net migration patterns have been based on the average yearly net migration seen over the past 20 years since 1991.\footnote{Future yearly net migration flows will be similar to the 20 year average net migration experienced over the period 1991 to 2011.} The net migration figure has been obtained by taking account of the difference between the natural change over this period and the change in population given by the mid-year estimates\footnote{The intercensal years have been interpolated between 2001 and 2011.}. The residual population change figure is effectively the implied net migration. The 20 year average has been used as the preferred basis for projections looking ahead to 2031 for two main, inter-related reasons. Firstly, this overcomes the problems of applying short term patterns of change which can be volatile and unrepresentative of longer term patterns of change. Secondly, net migration into Devon is particularly volatile and appears to correlate to changes in national economic performance\footnote{Inward migration into Devon has been compared with UK GDP growth.} (see Figure 1). A 20 year period base takes account of at least two full economic cycles and therefore has a smoothing effect on recent patterns and offers a more robust economic scenario for the future. A 10 year trend could be used to generate a range of projections if it were concluded that actual experience over that period was more likely to be replicated in the foreseeable future; i.e. if there was evidence of a sea-change in economic performance.
International migration

2.5.4 There is no single system in place to capture all movements in and out of the UK, therefore international migration estimates are based on three sources (none of which are specifically designed to capture information solely on international migration). These are the International Passenger Survey, Labour Force Survey and Home Office data on asylum seekers and their dependents.

2.5.5 Historical data has been input at district level into the model for age and sex of migrants. The number of international migrants has been comparatively small when compared with the number of 'within UK' migrants to Devon and its districts (see Figure 2).

2.5.6 Although the number of international migrants has been growing, no discernible trend has been seen within age ranges, and counts can vary notably between years. Due to this uncertainty and inconsistency, no local age-sex schedule has been produced to
inform future age-sex distributions. Instead, the national age-sex distribution for international migration has been applied to future international migration flows to give future breakdowns in terms of age and sex.

2.5.7 The total projected flows are the same as those provided by ONS for the years to 2011. The 2012 figures are due to be released in June 2013. This data is however unlikely to affect significantly the future projections.

‘Within UK’ migration

2.5.8 ‘Within UK migration’ represents a considerably larger scale of population movement. No single system exists to record these movements and so this information is derived from a combination of three proxy administrative sources; National Health Service Central Register data (HNSCR), the Patient Registers Data Service data (PRDS) and the Higher Education Statistics Agency data (HESA).

2.5.9 Data available for the past five years\(^{11}\) for inward and outward migration have been used to establish a local age-sex distribution for migrants which can then be applied to the projected migration flows. Calculating this schedule has involved disaggregating banded age data and smoothing the data to give age sex migration rates per 1000 population\(^ {12}\) (ASMigR).

2.5.10 The figures used for future local migration have been calculated by firstly looking at any trends in each district concerned and then, in conjunction with the international migration figure, constraining total flows to balance at the projected 20 year annual net migration figure. These calculations have led to four migration flows.

2.6 Other considerations – Special populations

2.6.1 ‘Special populations’ are people who will only live in Devon for a comparatively short proportion of their lives and the ages and numbers of these groups are relatively fixed. When they leave they are replaced by people of a similar age/sex profile. Two special populations exist in Devon and vary in proportions across different districts. These populations are generally removed from the population initially and added back in at a later stage to prevent them ‘ageing’ with the underlying population, which could distort the figures.

2.6.2 The two special populations usually identified are:

Armed Forces personnel

2.6.3 Age-sex information on army personnel has been obtained from the Defence Analytical Services Agency (DAS) via an ONS special request. The numbers of armed forces personnel have been supplied for the years 2002 to 2010. These figures have been kept constant for future years until more information is known about reductions/increases in staff.\(^ {13}\)

\(^{11}\) Using the last 5 years’ available data is considered adequate to produce the age/sex distribution. Using 20 years of data would not yield significantly different results and would be time consuming and difficult to acquire.

\(^{12}\) Interpolated intercensal years used as a base.

\(^{13}\) Future numbers and age-sex distribution of army forces personnel will remain constant at levels similar to those seen in 2010.
Students

2.6.4 Although this information has been obtained, students have not been modelled separately as, since 2001, student moves to and from their term time address have been recorded and included in the population estimates.
3 Dwelling projections - Assumptions

3.1 Introduction

3.1.1 The assumptions in the previous section allow a detailed population projection to be made based on birth, death and migration factors. In order to assess future demand for dwellings, headship rates and the institutional population need to be projected and applied to the projected population so as to translate the data into future household numbers. Vacancy rates along with those for second homes and sharing are then applied to household numbers to determine the number of dwellings needed to house the projected population. This as previously mentioned (page 5) gives rise to household projections on a 'demographic' or 'population' basis.

3.1.2 The following sections detail the assumptions made in undertaking the current projections for the Devon area. The headship rate and institutional population data are obtained from the Department for Communities and Local Government (DCLG) and based on 2008 projections.

3.2 DCLG data: 2008 or 2011

3.2.1 Despite the availability of 2011 DCLG projections for headship rates and the institutional population these data have not been used as the preferred basis with which to project the number of households. The detailed 2011 Census data needed to make dwelling projections fully compliant with the 2011 Census are due in 2014 and will be updated once DCLG 2014 data is received (which will incorporate all Census 2011 data. This report does however detail results based on both DCLG 2008 and DCLG 2011 data with the former basis being preferred at this time. The latter results are included in the appendix.

3.2.2 Differences between the 2008 and 2011 based rates are detailed in DCLG reports14. Specifically the 2008 DCLG projected rates continue to be used and are preferred for the following reasons:

- The basic methodology is the same as the 2011 DCLG methodology and for both sets of projections Census 2001 data is currently used as a basis for some inputs.

- 2008 DCLG rates do not rely so heavily on the application of Labour Force Survey (LFS) estimates to arrive at projected household representative rates. There is the possibility that the full results from the Census 2011 may reveal that the trends by age group are different to those observed in the Labour Force Survey.

- 2008 DCLG data provides projections for the next 20 years whereas the DCLG 2011 data are only available for the 10 years to 2021.

14 'Updating the Department for Communities and Local Government's household projections to a 2011 base' – Methodology Report.
3.3 Headship rates

3.3.1 These can be defined as the number of people per unit of population who are counted as heads of households. DCLG previously in the 2008 based projections provided yearly historic estimates and future projections of these rates (2001 until 2033) by 10 year age bandings and household type, e.g. the rate per 1000 population of 45-54 year olds who are deemed head of a single parent family with 3 children. There are seventeen individual household types and 10 age bandings.\(^\text{15}\)

3.3.2 To produce household representative rates by demographic group requires detailed non-standard Census data not all of which is currently available from the Census 2011. As previously mentioned the DCLG 2008 data will therefore continue to be used as the DCLG 2011 rates rely partly on using the LFS to estimate household representative rates. If, on the publication of the detailed Census 2011 data the trend seen in the LFS is found to be different to the Census 2011 trend then this would have a significant effect on any projections.

3.3.3 In addition, the most up to date DCLG 2011 data only provides projections between 2011 and 2021 and this is another reason for continuing to use the DCLG 2008 data which span a 25 year time frame.

3.4 Institutional population rates\(^\text{16}\)

3.4.1 The household projections are based on the projected household population rather than the total population. The difference between the two is the population in communal establishments, also termed the institutional population. This population comprises all people not living in private households. These include people living in nursing homes, halls of residence, military barracks and prisons.

3.4.2 Currently the 2011 Census does not provide the detail necessary for incorporation into the model and therefore the some assumptions are in line with the 2001 Census (as per the CLG 2008 projections).

3.4.3 When the institutional population is available at age, gender and marital status from the 2011 Census the methodology for deriving institutions and household population estimates and projections may be revised.

3.5 Vacancy rates

3.5.1 Vacancy rates used have been obtained from the Census 2001 and can be updated when the Census 2011 detailed data becomes available (late 2013). The number of occupied household spaces divided by all occupied household dwellings gives the occupancy rate with the remainder the vacancy rate. The ‘vacancy rate’ as applied to the model also takes into account second homes and holiday homes.\(^\text{17}\)

\(^{15}\) Future rates as per DCLG – 2008 projections

\(^{16}\) Taken from report ‘Updating the Department for Communities and Local Government’s household projections to a 2011 base – Methodology Report’.

\(^{17}\) Future rates as per Census 2001.
4 Limitations and caveats

4.1 A representation of possible future events

4.1.1 The projections included within this report are considered to represent the most appropriate and robust assessment of housing demand in the Exeter HMA area. They use the most reliable and appropriate data which are currently available. The projections can be updated and revised as and when new, more appropriate data becomes available. This data could be derived from the 2011 Census. Further data may also be made available regarding new migration flows.

4.1.2 Similar to all population projections, there are always uncertainties regarding population and dwelling projections. There are also additional uncertainties involved with the use of the DCLG projected household formation rates. As a cautionary measure the DCLG 2008 rates will continue to be used until all the necessary detailed information from the Census 2011 is available and incorporated into the DCLG 2014 projected household formation rates. At this future point when the DCLG 2014 rates have been used along with any subsequent updates to the model population projections further updates will be made to the HMA projection of housing demand.
5 Results – Housing demand in the Exeter HMA

5.1 Dwelling estimates for the Exeter HMA

5.1.1 For the purpose of this report, dwelling estimates for the Exeter HMA are calculated on the basis of housing demand as opposed to need. There is an important distinction between need and demand which should be considered. Housing need reflects the total, unconstrained requirement and aspiration for new dwellings calculated on the basis of demographic change, migration and household formation. It can therefore be seen as being closer to the number of dwellings that would be required to fully accommodate the aspiration of the population to occupy a separate dwelling space. Housing demand is a more constrained figure which takes account of the ‘realistic’ potential for need to be met. This is partially determined by housing supply but also the availability of finance.

5.1.2 Table 1 shows the increase in the projected population between 2011 and 2031 based on the most up to date data available. It also shows the projected total HMA housing demand (based on the projected population and CLG 2008 data) over a twenty year period between 2011 and 2031 together with the total housing allocations (current and emerging) for the Local Planning Authority Areas within the HMA. These are Exeter, East Devon, Mid Devon and Teignbridge.

5.1.2 As can be seen from Table 1, the projected population for 2031 is 513,000 which equates to an increase of 60,400 within the Exeter HMA. The projected increase in housing demand for the Exeter HMA based on the previously mentioned population projection totals 42,200. The total allocations for the HMA area are approximately 46,300 and it is considered that this overall level of provision is broadly in accordance with calculated housing demand in the HMA. A difference of 4100 dwellings between calculated demand and total allocations equates to 10% of the total demand.

<table>
<thead>
<tr>
<th>Exeter Housing Market Area – Based on DCLG 2008 data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2011</td>
</tr>
<tr>
<td>452,500</td>
</tr>
<tr>
<td>Total HMA area adopted/proposed housing allocations:</td>
</tr>
<tr>
<td>Difference: 4,100</td>
</tr>
</tbody>
</table>

Table 1- Population and dwelling projections using DCLG 2008 household formation rates.

5.1.3 The figures in Table 1 represent housing demand over the twenty year period between 2011 and 2031. The plan periods for the District Council Local Plans and Core Strategies which include the allocations all cover twenty years, however the actual 20 year plan periods themselves are not consistent between all plans. This is largely as a result of circumstances and plan preparation issues. The Local Plan periods do however broadly cover similar years, ranging from 2006 to 2026 and 2013 to 2033. As
such, it is considered that notwithstanding the varying plan dates, a comparison between planned provision and dwelling demand still provides a broad basis for assessing future consistency.

5.1.4 A strategic comparison can be made between the total current and proposed allocations in the Exeter HMA and the various versions of the Regional Spatial Strategy for the South West (RSS) which was intended to cover the period 2006 to 2026. Although regional planning policy has now been revoked, it provides a useful sensitivity test against which the overall allocations for the HMA can be considered. Table 2 shows the suggested housing provision for the HMA as identified in the various versions of the draft RSS, together with the potential allocations.

Exeter Housing Market Area – allocations and RSS sensitivity test

<table>
<thead>
<tr>
<th>Total allocations</th>
<th>Draft RSS</th>
<th>RSS Panel modifications</th>
<th>RSS Secretary of States proposed changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>46,300</td>
<td>38,400</td>
<td>46,900</td>
<td>55,400</td>
</tr>
</tbody>
</table>

Table 2- Exeter Housing Market Area – allocations in comparison with RSS provision.

5.1.5 Table 2 shows that the total allocations for the Exeter HMA are very comparable to the RSS panel modifications.

5.1.4 Devon County Council has always maintained projections of dwelling demand using the most up to date data and long term patterns of migration. Significantly higher figures were used within the latter versions of the RSS, but these reflected the then prevailing ONS projections which were themselves based on highly volatile, short term migration trends. These short term trends have subsequently fallen sharply, showing a substantial reduction in projected housing demand.
6 Implications for East Devon

6.1 Housing demand in East Devon

6.1.1 As identified in section 5 of this report, the total current and emerging allocations within the Local Plans and Core Strategies which cover the HMA broadly match the calculated housing demand for the Exeter HMA.

6.1.2 Although the overall existing and emerging allocations in the Exeter HMA are slightly greater than the forecast demand, over the whole HMA this difference is not considered to be significant and it is appropriate to plan positively for a scale of provision slightly in excess of basic demand.

6.1.3 A slight potential excess of housing provision over housing demand within the HMA is not considered to be a significant issue for a number of reasons:

- The projections only relate to housing demand in the area and do not take full account of housing need. It is appropriate for Local Planning Authorities to plan for levels of development slightly greater than simple demand in order to be aspirational but realistic;
- It will help to meet any currently suppressed demand which has partially resulted from a lack of previous housing provision and difficulty in securing finance for property purchase;
- It will allow for an acceleration in supply going forward should economic conditions improve more strongly than anticipated; and
- It will help to support the general government housing agenda regarding additional supply.

6.1.4 In conclusion, the overall provision of 15,000 homes as is identified within the emerging East Devon Local Plan is considered to be broadly consistent with projections of housing demand for the wider HMA and County area.
Appendix

Dwelling estimates for the Exeter HMA using DCLG 2011 rates

Table 3 below details the population projections along with dwelling need versus demand for the Exeter HMA based on the DCLG 2011 household formation rates. This represents an alternative scenario and should be treated with caution until updated with the DCLG 2014 household formation rates which may or may not confirm the trends incorporated from the Labour Force Survey into the DCLG 2011 data.

Table 3 shows that the projected population for 2031 is 513,000 equating to an increase of 60,400 within the Exeter HMA. The projected housing demand for the Exeter HMA based on the previously mentioned increase in population projection totals 37,600. The total allocations for the HMA area are approximately 46,300. A difference of 8,700 dwellings between calculated demand and total allocations would equate to 23% over provision of the total demand.

<table>
<thead>
<tr>
<th>Exeter Housing Market Area – Based on DCLG 2011 data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
</tr>
<tr>
<td>2011</td>
</tr>
<tr>
<td>452,500</td>
</tr>
</tbody>
</table>

Total HMA area adopted/proposed housing allocations: 46,300

Difference: 8,600

Table 3- Population and dwelling projections using DCLG 2011 household formation rates.